Unsupervised domain adaptation via distilled discriminative clustering

نویسندگان

چکیده

Unsupervised domain adaptation addresses the problem of classifying data in an unlabeled target domain, given labeled source that share a common label space but follow different distribution. Most recent methods take approach explicitly aligning feature distributions between two domains. Differently, motivated by fundamental assumption for adaptability, we re-cast as discriminative clustering data, strong privileged information provided closely related, data. Technically, use objectives based on robust variant entropy minimization adaptively filters soft Fisher-like criterion, and additionally cluster ordering via centroid classification. To distill clustering, propose to jointly train network using parallel, supervised learning over We term our method distilled DisClusterDA. also give geometric intuition illustrates how constituent DisClusterDA help learn class-wisely pure, compact distributions. conduct careful ablation studies extensive experiments five popular benchmark datasets, including multi-source one. Based commonly used backbone networks, outperforms existing these benchmarks. It is interesting observe framework, adding additional loss learns align class-level across domains does harm performance, though more algorithmic frameworks are be conducted.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Discriminative and Geometry Aware Unsupervised Domain Adaptation

Domain adaptation (DA) aims to generalize a learning model across training and testing data despite the mismatch of their data distributions. In light of a theoretical estimation of upper error bound, we argue in this paper that an effective DA method should 1) search a shared feature subspace where source and target data are not only aligned in terms of distributions as most state of the art D...

متن کامل

Deep Unsupervised Domain Adaptation for Image Classification via Low Rank Representation Learning

Domain adaptation is a powerful technique given a wide amount of labeled data from similar attributes in different domains. In real-world applications, there is a huge number of data but almost more of them are unlabeled. It is effective in image classification where it is expensive and time-consuming to obtain adequate label data. We propose a novel method named DALRRL, which consists of deep ...

متن کامل

Information-Theoretical Learning of Discriminative Clusters for Unsupervised Domain Adaptation

We study the problem of unsupervised domain adaptation, which aims to adapt classifiers trained on a labeled source domain to an unlabeled target domain. Many existing approaches first learn domain-invariant features and then construct classifiers with them. We propose a novel approach that jointly learn the both. Specifically, while the method identifies a feature space where data in the sourc...

متن کامل

Unsupervised Transductive Domain Adaptation

Supervised learning with large scale labeled datasets and deep layered models has made a paradigm shift in diverse areas in learning and recognition. However, this approach still suffers generalization issues under the presence of a domain shift between the training and the test data distribution. In this regard, unsupervised domain adaptation algorithms have been proposed to directly address t...

متن کامل

Discriminative Label Consistent Domain Adaptation

Domain adaptation (DA) is transfer learning which aims to learn an effective predictor on target data from source data despite data distribution mismatch between source and target. We present in this paper a novel unsupervised DA method for cross-domain visual recognition which simultaneously optimizes the three terms of a theoretically established error bound. Specifically, the proposed DA met...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Pattern Recognition

سال: 2022

ISSN: ['1873-5142', '0031-3203']

DOI: https://doi.org/10.1016/j.patcog.2022.108638